Mô hình dự báo định lượng dựa trên số liệu quá khứ, những số liệu này giả sử có liên quan đến tương lai và có thể tìm thấy được. Tất cả các mô hình dự báo theo định lượng có thể sử dụng thông qua chuỗi thời gian và các giá trị này được quan sát đo lường các giai đoạn theo từng chuỗi .
Các bước tiến hành dự báo:
- Xác định mục tiêu dự báo.
- Xác định loại dự báo.
- Chọn mô hình dự báo.
- Thu thập số liệu và tiến hành dự báo.
- Ứng dụng kết quả dự báo.
Tính chính xác của dự báo:
Tính chính xác của dự báo đề cập đến độ chênh lệch của dự báo với số liệu thực tế. Bởi vì dự báo được hình thành trước khi số liệu thực tế xảy ra, vì vậy tính chính xác của dự báo chỉ có thể đánh giá sau khi thời gian đã qua đi. Nếu dự báo càng gần với số liệu thực tế, ta nói dự báo có độ chính xác cao và lỗi trong dự báo càng thấp.
Người ta thường dùng độ sai lệch tuyệt đối bình quân (MAD) để tính toán
1. Dự báo ngắn hạn
Dự báo ngắn hạn ước lượng tương lai trong thời gian ngắn, có thể từ vài ngày đến vài tháng. Dự báo ngắn hạn cung cấp cho các nhà quản lý tác nghiệp những thông tin để đưa ra quyết định về các vấn đề như:
− Cần dự trữ bao nhiêu đối với một loại sản phẩm cụ thể nào đó cho tháng tới ?
− Lên lịch sản xuất từng loại sản phẩm cho tháng tới như thế nào ?
− Số lượng nguyên vật liệu cần đặt hàng để nhận vào tuần tới là bao nhiêu ?
a. Dự báo sơ bộ:
Mô hình dự báo sơ bộ là loại dự báo nhanh, không cần chi phí và dễ sử dụng. Ví dụ như:
− Sử dụng số liệu hàng bán ngày hôm nay làm dự báo cho lượng hàng bán ở ngày mai.
− Sử dụng số liệu ngày này ở năm rồi như là dự báo lượng hàng bán cho ngày ấy ở năm nay.
Mô hình dự báo sơ bộ quá đơn giản cho nên thường hay gặp những sai sót trong dự báo.
b. Phương pháp bình quân di động:
Phương pháp bình quân di động trung bình hóa các số liệu trong một giai đoạn gần đây và số trung bình này trở thành dự báo cho giai đoạn tới.
c. Phương pháp bình quân di động có quyền số.
Trong phương pháp bình quân di động được đề cập ở phần trên, chúng ta xem vai trò của các số liệu trong quá khứ là như nhau. Trong một vài trường hợp, các số liệu nầy có ảnh
hưởng khác nhau trên kết quả dự báo, vì thế, người ta thích sử dụng quyền số không đồng đều cho các số liệu quá khứ. Quyền số hay trọng số là các con số được gán cho các số liệu quá
khứ để chỉ mức độ quan trọng của chúng ảnh hưởng đến kết quả dự báo. Quyền số lớn được gán cho số liệu gần với kỳ dự báo nhất để ám chỉ ảnh hưởng của nó là lớn nhất. Việc chọn các quyền số phụ thuộc vào kinh nghiệm và sự nhạy cảm của người dự báo.
Công thức tính toán:
Cả 2 phương pháp bình quân di động và bình quân di động có quyền số đều có ưu điểm là san bằng được các biến động ngẫu nhiên trong dãy số . Tuy vậy, chúng đều có nhược điểm sau:
− Do việc san bằng các biến động ngẫu nhiên nên làm giảm độ nhạy cảm đối với những thay đổi thực đã được phản ánh trong dãy số.
− Số bình quân di động chưa cho chúng ta xu hướng phát triển của dãy số một cách tốt nhất. Nó chỉ thể hiện sự vận động trong quá khứ chứ chưa thể kéo dài sự vận động đó trong tương lai.
d. Phương pháp điều hòa mũ
Điều hòa mũ đưa ra các dự báo cho giai đoạn trước và thêm vào đó một lượng điều chỉnh để có được lượng dự báo cho giai đoạn kế tiếp. Sự điều chỉnh này là một tỷ lệ nào đó của sai số dự báo ở giai đoạn trước và được tính bằng cách nhân số dự báo của giai đoạn trước với hệ số nằm giữa 0 và 1. Hệ số này gọi là hệ số điều hòa.
Ví dụ 2-4: Ông A muốn dự báo số lượng hàng bán ra của công ty để nhằm lên kế hoạch
tiền mặt, nhân sự và nhu cầu năng lực cho tương lai. Ông tin rằng trong suốt giai đoạn 6 tháng qua, số liệu lượng hàng bán ra có thể đại diện cho tương lai. Ông xây dự báo điều hòa mũ
theo xu hướng cho số lượng hàng bán ra ở tháng thứ 7 nếu α = 0,2 ; β=0,3 và số liệu bán ra trong quá khứ như sau (đơn vị: 10 Triệu đồng).
2. Dự báo dài hạn
Dự báo dài hạn là ước lượng tương lai trong thời gian dài, thường hơn một năm. Dự báo dài hạn rất cần thiết trong quản trị sản xuất để trợ giúp các quyết định chiến lược về hoạch định sản phẩm, quy trình công nghệ và các phương tiện sản xuất. Ví dụ như:
− Thiết kế sản phẩm mới.
− Xác định năng lực sản xuất cần thiết là bao nhiêu ? Máy móc, thiết bị nào cần sử dụng và chúng được đặt ở đâu ?
− Lên lịch trình cho những nhà cung ứng theo các hợp đồng cung cấp nguyên vật liệu dài hạn.
Dự báo dài hạn có thể được xây dựng bằng cách vẽ một đường thẳng đi xuyên qua các số liệu quá khứ và kéo dài nó đến tương lai. Dự báo trong giai đoạn kế tiếp có thể được vẽ vượt ra khỏi đồ thị thông thường. Phương pháp tiếp cận theo kiểu đồ thị đối với dự báo dài hạn có thể dùng trong thực tế, nhưng điểm không thuận lợi của nó là vấn đề vẽ một đường tương ứng hợp lý nhất đi qua các số liệu quá khứ này.
Phân tích hồi qui sẽ cung cấp cho chúng ta một phương pháp làm việc chính xác để xây dựng đường dự báo theo xu hướng.
☺ Phương pháp hồi qui tuyến tính.
Phân tích hồi qui tuyến tính là một mô hình dự báo thiết lập mối quan hệ giữa biến phụ thuộc với hai hay nhiều biến độc lập. Trong phần này, chúng ta chỉ xét đến một biến độc lập duy nhất. Nếu số liệu là một chuỗi theo thời gian thì biến độc lập là giai đoạn thời gian và biến phụ thuộc thông thường là doanh số bán ra hay bất kỳ chỉ tiêu nào khác mà ta muốn dự báo.
Ví dụ 2-5: Một hãng sản xuất loại động cơ điện tử cho các van khởi động trong ngành công nghiệp, nhà máy hoạt động gần hết công suất suốt một năm nay. Ông J, người quản lý nhà
máy nghĩ rằng sự tăng trưởng trong doanh số bán ra vẫn còn tiếp tục và ông ta muốn xây dựng một dự báo dài hạn để hoạch định nhu cầu về máy móc thiết bị trong 3 năm tới. Số lượng bán ra trong 10 năm qua được ghi lại như sau:
Trường hợp biến độc lập không phải là biến thời gian, hồi qui tuyến tính là một nhóm các
mô hình dự báo được gọi là mô hình nhân quả. Mô hình này đưa ra các dự báo sau khi thiết lập và đo lường các biến phụ thuộc với một hay nhiều biến độc lập.
Ví dụ 2-6: Ông B, nhà tổng quản lý của công ty kỹ nghệ chính xác nghĩ rằng các dịch vụ kỹ nghệ của công ty ông ta được cung ứng cho các công ty xây dựng thì có quan hệ trực tiếp đến số hợp đồng xây dựng trong vùng của ông ta. Ông B yêu cầu kỹ sư dưới quyền, tiến hành phân tích hồi qui tuyến tính dựa trên các số liệu quá khứ và vạch ra kế hoạch như sau :
- Xây dựng một phương trình hồi qui cho dự báo mức độ nhu cầu về dịch vụ của công ty ông.
- Sử dụng phương trình hồi qui để dự báo mức độ nhu cầu trong 4 quí tới. Ước lượng trị giá hợp đồng 4 quí tới là 260, 290, 300 và 270 (ĐVT:10 Triệu đồng).
- Xác định mức độ chặt chẽ, các mối liên hệ giữa nhu cầu và hợp đồng xây dựng được đưa ra.
- Biết số liệu từng quí trong 2 năm qua cho trong bảng:(đơn vị: 10 Triệu đồng).
Phân tích hồi qui tuyến tính dựa trên số liệu đã phi mùa vụ.
Sử dụng phương trình hồi qui để dự báo cho tương lai.
Sử dụng chỉ số mùa vụ để tái ứng dụng tính chất mùa vụ cho dự báo.
Ví dụ 2-7: Ông J nhà quản lý nhà máy động cơ đặc biệt đang cố gắng lập kế hoạch tiền mặt và nhu cầu nguyên vật liệu cho từng quí của năm tới. Số liệu về lượng hàng bán ra trong vòng 3 năm qua phản ánh khá tốt kiểu sản lượng mùa vụ và có thể giống như trong tương lai. Số liệu cụ thể như sau:
Bây giờ chúng ta thay thế giá trị của x cho 4 quí tới bằng 13, 14, 15, 16 vào phương trình. Đây là dự báo phi mùa vụ trong 4 quí tới.
Y41 = (16,865 x 13) + 615,421 = 834,666
Y42 = (16,865 x 14) + 615,421 = 851,531
Y43 = (16,865 x 15) + 615,421 = 868,396
Y44 = (16,865 x 16) + 615,421 = 885,261
Tiếp theo, ta sử dụng chỉ số mùa vụ để mùa vụ hóa các số liệu.
19 Th12 2020
18 Th12 2020
19 Th12 2020
19 Th12 2020
19 Th12 2020
18 Th12 2020